Try changing the values here ... sometimes there will be a remainder:

Lawak 1
Seorang cikgu masuk ke dalam bilik darjah.
Cikgu : Hari ini kita akan belajar mengira..
Murid-Murid : Baik cikgu..
Si guru mula bertanya kepada salah seorang muridnya, Ahmad
Cikgu : Ahmad, jika 1 biji timun ditambahkan 2 biji epal tambah 3 biji nenas dan 4 biji jambu jadi berapa...?
Ahmad : Jadi ROJAK cikgu..!! Nyam2..
Cikgu : Hah...??
Cikgu : Hari ini kita akan belajar mengira..
Murid-Murid : Baik cikgu..
Si guru mula bertanya kepada salah seorang muridnya, Ahmad
Cikgu : Ahmad, jika 1 biji timun ditambahkan 2 biji epal tambah 3 biji nenas dan 4 biji jambu jadi berapa...?
Ahmad : Jadi ROJAK cikgu..!! Nyam2..
Cikgu : Hah...??

Lawak 2
Cikgu : Mat, 4 x 6 berapa?
Mat : 24, cikgu...
Cikgu : Bagus, 6 x 4 berapa?
Mat : Sudah tentu 42.
Mat : 24, cikgu...
Cikgu : Bagus, 6 x 4 berapa?
Mat : Sudah tentu 42.

Lawak 3
Anak : " Mak! Saya mendapat 10 markah pada ujian matematik dan kata guru hanya saya saja yang mendapat 10 markah!"
Emak : " Pintar anak mak. Murid yang lain dapat markah berapa"??
Anak : " Kata guru yang lain mendapat 100 markah".
Emak : " Pintar anak mak. Murid yang lain dapat markah berapa"??
Anak : " Kata guru yang lain mendapat 100 markah".

Lawak 4
GURU: Ali, mengapa awak tidak membuat kerja rumah yang cikgu beri ?
ALI: Emak saya beritahu saya supaya tidak buat kerja rumah.
GURU: Mengapa emak awak berkata begitu ?
ALI: Kerana semua kerja rumah emak saya yang buat.
ALI: Emak saya beritahu saya supaya tidak buat kerja rumah.
GURU: Mengapa emak awak berkata begitu ?
ALI: Kerana semua kerja rumah emak saya yang buat.
Prev
1
2
3
4
Next
Tuesday, 1 November 2011
But Sometimes It Does Not Work Perfectly!
Sometimes you cannot divide things up evenly ... there may be something left over.

We call that the Remainder.
We say:
And we write:
Example: There are 7 cookies, and 2 people want to share them equally.
But 7 cookies cannot be divided exactly into 2 groups,
each person gets 3 cookies,
but there will be 1 left over:
each person gets 3 cookies,
but there will be 1 left over:
We call that the Remainder.
We say:
"7 divided by 2 equals 3 with a remainder of 1"
And we write:
7 ÷ 2 = 3 R 1
As a Fraction
It is also possible to cut the remaining cookie in half, and then each person would have 3 ½ cookies, so:7 ÷ 2 = 3 R 1 = 3 ½
"7 divided by 2 equals 3 remander 1 equals 3 and a half"
Opposite of Multiplying
Division is the opposite of multiplying. If you know a multiplication fact you can find a division fact:
Why? Well it is easy to understand if you think of the numbers in rows and columns like in this illustration:
Example: 3 × 5 = 15, so 15 / 5 = 3.
Also 15 / 3 = 5.
Why? Well it is easy to understand if you think of the numbers in rows and columns like in this illustration:
|
So there are four related facts:
- 3 × 5 = 15
- 5 × 3 = 15
- 15 / 3 = 5
- 15 / 5 = 3
Knowing your Multiplication Tables can help you with division!
Example: What is 56 ÷ 7 ?
Searching around the multiplication table you find that 56 is 7 × 8, so 56 divided by 7 must be 8. Answer: 56 ÷ 7 = 8.
Subscribe to:
Posts (Atom)